skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aider, Youssef"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The state-of-the-art determines the remaining useful lifetime (RUL) through a steady-state, fixed power cycling tests (PCT) without considering the impact of dynamically changing environmental conditions. It has resulted in considerable RUL prediction errors in the real world. However, the dynamic changing conditions (e.g., large temperature swings) may affect the degradation evolution of SiC MOSFET, which could eventually result in RUL changes. Thus, it must be integrated to make accurate predictions. To precisely understand the RUL variation complexity, the junction temperature (Tj) has been measured with a Negative Thermal Coefficient (NTC) thermistor, Temperature Sensitive Electrical Parameter (TSEP), and these profiles have been modeled through the thermal model RC foster network using Extended Kalman Filter (EKF). Then, the on-state resistance (Rds,on) variations and Degradation Acceleration Factor (DAF) under the dynamic environment conditions are integrated into a lifetime prediction model to accurately predict the RUL through the Long Short-Term Memory (LSTM) machine learning algorithm. 
    more » « less
    Free, publicly-accessible full text available March 16, 2026